Amsoil Engine® Polygraph tests

Jim Mentele and Doug Strock, Predictive Fleet Technologies; John Brock, SenXTech

This report documents the findings from a comparison of **before** and **after** Engine Polygraph Assessment reports of a Kia inline 4-cylinder 3.0 L engine, where the before and after are in reference to an oil change from organic oil to synthetic Amsoil.

On 2017-06-23, John Brock tested his Kia 3.0 L engine with Engine Polygraph. The engine had 5-w20 factory oil at 3500 miles since the previous change.

The data on the left below is the **before** Assessment. The scores are shown below on the right is the Assessment report made after changing the oil to 5w-20 Amsoil synthetic. The after test was taken 15 miles after the change at odometer = 50232.

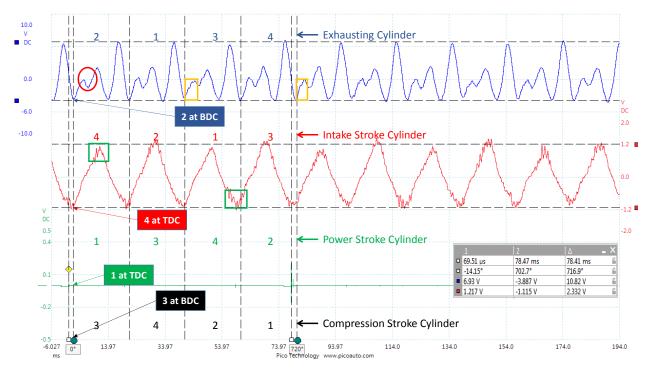
> Vehicle ID : 2016Kia

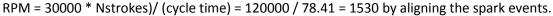
Vehicle ID : 2016Kia

	Version 5.0		Version 5.0				
User's comments	Pre-Amsoil		User's comments	Post-Amsoil			
User's file name	441297f9-84d5-4e3f-ae95-502dd4dfe35a.psdata		User's file name	326be52b-2afa-488f-bcd6-bd14d6ee22fc.psdata			
Engine Polygraph name	20170623-0001 kia 1500 rpm pre oil change.psdata		Engine Polygraph name	20170623-0001 AMS oil air off 1500.psdata			
Engine Temperature	re 180 F		Engine Temperature	180 F			
RPM	1532		RPM	1479			
Date	2017-06-23 12:00:00 AM		Date	2017-06-23 12:00:00 AM			
Odometer	15000		Odometer	15000			
Engine	Kia 2.0L Theta II Kia I4 (4 stroke, 4 cylinders)		Engine	Kia 2.0L Theta II Kia I4 (4 stroke, 4 cylinders)			
Serial Number	NA		Serial Number	NA			
Owner	JohnBrock		Owner	JohnBrock			

Upper Engine					1					
Lower Engine								1		
Volumetric Ef	f. Score							7		7 i
Valve Seating								1		
			,	Warning	8					
1 2	3	4	5	6	7	8	9		10	[

Upper Engine	1								
Lower Engine	1								
Volumetric Eff. Score	1								
Valve Seating	1								
Warnings									
1 2 3	4	5	6	7	8	9	10		

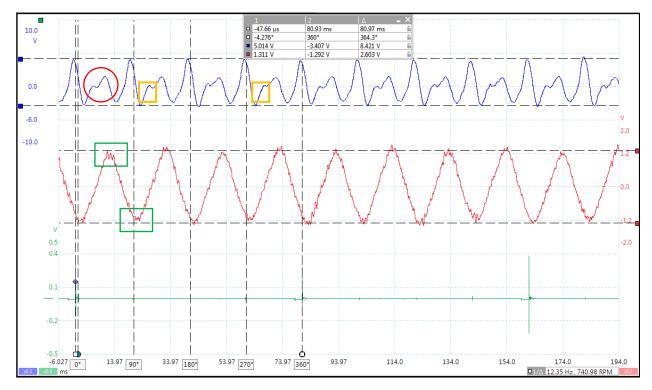

Notice the change in Volumetric Efficiency score with the Amsoil.


The vibrational spectrum (below) shows significant reduction in the intensity of 3 bands of the spectrum that we monitor: 'Low' for vibrations due to variations on the cm-to-mm scale; 'Hi' for the (10-100) μ m; whistle for less than 10 μ m. In the table below, we use **Ex** for exhaust and **Crank** for crankcase.

Vibrational Spectrum Exhaust & Crankcase		Ex Low Vibration	Ex Hi Vibration	Ex Whistle	Crank Low Vibration	Crank Hi Vibration	Crank Whistle
441297f9-8	pre amsoil 1500	0.28	0.18	0	0.25	0.31	0
326be52b	post Amsoil 1500	0.15	0.07	0	0.22	0.28	0

We have the firing order for this engine: 1-3-4-2 with cylinder 1 closest to the cooling fan.

Below is the Pico waveform for the Exhaust (top – blue), Crankcase (middle – red), and Ignition (bottom – green) of the engine **before** the oil change to Amsoil. Ignition precedes TDC by several ms.



The red crankcase curve pressure variation is largely due to the pressure change in the intake manifold through the PCV (positive crankcase ventilation) valve. Notice the rough sections on the crankcase curve near the top and bottom extremes (green boxes) indicating possible 'fluttering' of the PCV valve in the 'Before' engine.

The colored boxes represent the cylinders (1 to 4) and the stroke each is entering at the time that cylinder one hits TDC.

3

Below is the Pico waveform for the Exhaust (top - blue), Crankcase (middle – red), and Ignition (bottom – green) of the engine **after** the oil was changed to Amsoil.

RPM = 30000 * Nstrokes)/ (cycle time) = 120000 / 80.97 = 1482 by aligning the spark events.

Visible differences with possible explanations:

- The dip in the first peak of the Exhaust (circled in red) is less after Amsoil than before, relating to the lower Volumetric Efficiency score. The roughness on the upward incline in the 'before' Exhaust (yellow squares) also contributes to that difference.
- 2. The crankcase is more uniform here in the after with less 'hair' at the top and bottom of the peaks and valleys (where the intake valve is opening and closing green boxes). There is less 'roughness' on the sides indicating less vibration from the cam lobes, cylinder walls, crankshaft suggesting better lubrication.
- The Exhaust range is less in the after (8.421 10.82)/ 10.82 = 22% lower) due to the slower speed (1482 1530)/ 1530 = 6.7% lower. This suggests that the engine is burning much less fuel after the Amsoil than would be expected by the small change in engine speed.
- The pressure range in the crankcase is greater in the after than the before suggesting that more air is flowing into the cylinders from the crankcase upon intake. (2.603 - 2.332)/2.332 = 11% more.

Engine Polygraph is a product of **Predictive Fleet Technologies, Inc**. More information can be found in the Documents section of the website <u>www.enginepolygraph.com</u> and in the KnowledgeBase section of <u>www.engineangel.com</u>, the website for the **Engine Angel**[®] Fleet Management application.