

Engine Polygraph™ And Engine Angel™

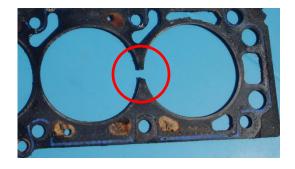
Doug Strock - President James Mentele – Senior System Architect Mike Colburn – Director of Global Sales Randall Montalbano – Director of Marketing

Predictive Fleet Technologies, Inc.©

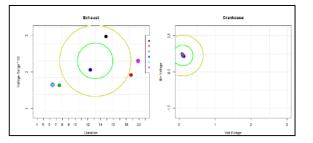
Problem: OBD is insufficient

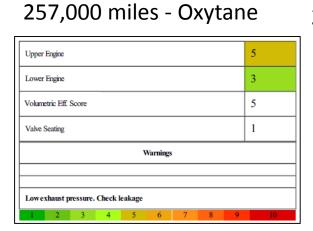
- On-Board Diagnostics (OBD) do not "see" many mechanical faults with the engine and cannot detect "dirty" engine conditions.
- Anywhere from 37% to 60% of parts sent back under warranty repair are not defective (No Fault Found –NFF).
- 3. Oil and fuel additive manufacturers lack reliable methods of proving their products actually work.
- 4. No simple, fast, accurate and affordable method for assessing engine "health" exists.

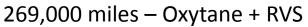
The Solution is Engine Polygraph™


- 1. Two Piezoelectric Pressure Pulse sensors and the proper analytical software provides an accurate, reliable assessment of engine health.
- 2. Works by analyzing the pressure waves generated by the engine when running, sampling over 40,000 times each second.
- 3. The most minute changes in engine condition become observable.
- 4. Detects issues On Board Diagnostic sensors cannot.

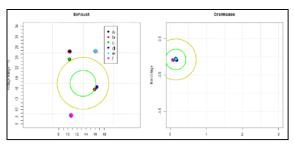
Exhaust

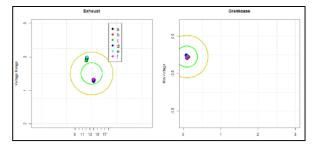

Oil Dipstick Tube

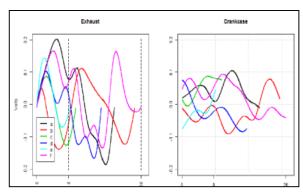


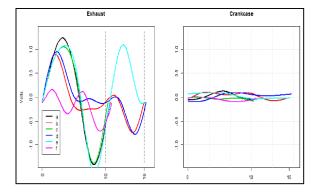

Engine Polygraph - Visible Results

252,000 miles - untreated

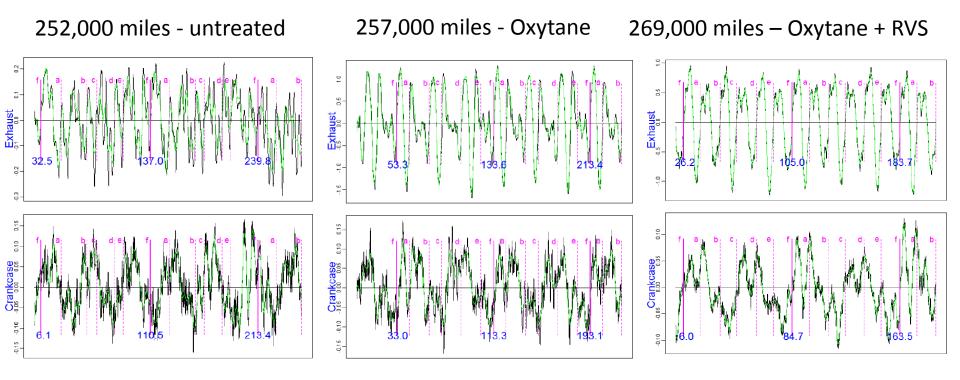

Upper Engine					5				
Lower Engine							3		
Volumetric Eff. Score							9		
Valve Seating						1			
Warnings									
High differences between cycles									
Lowex	Low exhaust pressure. Check leakage								
1	2	3	4	5	6	7	8	9	10







Upper Engine	2							
Lower Engine	3							
Volumetric Eff. Score	1							
Valve Seating	1							
Warnings								
Lowexhaust pressure. Check leakage								
1 2 3 4 5 6 7 8 9	10							



Engine Polygraph - Waveform Changes

Faster Problem Diagnosis

- 1. Currently provide numeric score to indicate severity
- 2. Pending implementation of descriptive text for Issue, Possible Cause and Recommended Fix.
- 3. Addition of graphics to assist the mechanic in fault diagnosis, such as Engine Block diagram, firing order, adjacency matrix, and cylinder offset diagram.
- 4. Quickly isolate mechanical problems from electrical problems.
- 5. Confirm proper operation upon completion of a repair/rebuild.
- 6. Rapid compression test (relative compression)

What can we detect?

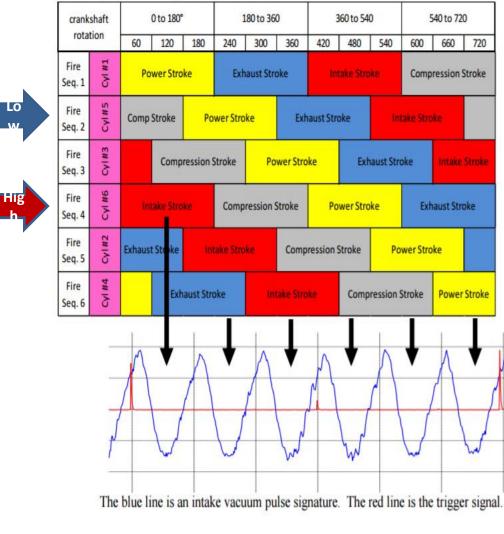
- 1. Valve Seating
- 2. Broken Valve Spring
- 3. Torn or damaged head gasket
- 4. Weak or broken fuel injector
- 5. Worn or rough cam lobe surface
- 6. Blow-by during compression stroke or intake stroke
- 7. Scraping of crankcase components (piston rings against cylinder wall)
- 8. Mis-fire with fuel
- 9. Mis-fire without fuel

Engine Block, AdjacencyMatrix, FiringSequence

 $\begin{array}{c}
6 \\
(4) \\
(3) \\
(2) \\
\end{array}$

V6 Right Alt :

Firing Seq: 1-2-3-4-5-6


Cylinde r	Adj1	Adj2
1	3	
2	4	
3	1	5
4	2	6
5	3	
6	4	

6-Cylinder 4-Stroke Offset Diagram

W

A 6-cylinder engine with firing order: 1-5-3-6-2-4

Cylinder Offset Diagram

		trigger pulse	+1	+2	+3		
	Exhaust pulses	#2 exhaust	#4 exhaust	#1 exhaust	#5 exhaust	#3 exhaust	#6 exhaust
Confidential: Predictive	Crankcase	#1 crankcase	#5 crankcase	#3 crankcase	#6 crankcase	#2 crankcase	#4 crankcase
Inc.	intake vacuum pulses		#2 intake	#4 intake	#1 intake	#5 intake	#3 intake

Value Proposition

1. Maintenance Shop

- a. Revenue stream from Assessment fees
- b. Decreased diagnostic time
- c. "New" cutting-edge capability
- d. Risk reduction demonstrate repair efficacy (Before/After)

Contact Information:

Doug Strock djstrock@engineangel.com (989) 859-6213

www.engineangel.com www.enginepolygraph.com